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Abstract. Semileptonic and non-leptonic decays of the Bc meson to Bs and B mesons, caused by the
c → s, d quark transitions, are studied in the framework of the relativistic quark model. The heavy quark
expansion in inverse powers of the active c and spectator b̄ quark is used to simplify calculations while
the final s and d quarks in the Bs and B mesons are treated relativistically. The decay form factors are
explicitly expressed through the overlap integrals of the meson wave functions in the whole accessible
kinematical range. The obtained results are compared with the predictions of other approaches.

1 Introduction

The Bc meson discovered at Fermilab [1] is the only quark–
antiquark bound system (b̄c) composed of heavy quarks (b,
c) with different flavors, thus being flavor asymmetric. The
investigation of the Bc meson properties (mass spectrum,
decay rates, etc.) is therefore of special interest compared to
symmetric heavy quarkonium (bb̄, cc̄) ones. The difference
of quark flavors forbids the annihilation of Bc into gluons.
As a result the pseudoscalar b̄c state is much more stable
than the heavy quarkonium one and decays only weakly.
It serves as a final state for the pionic and radiative decays
of the excited b̄c states (lying below the BD threshold).
Experimental study of the Bc mesons is planned both at the
Tevatron and Large Hadron Collider (LHC) (for a recent
review see e.g. [2] and references therein).

Since both quarks (b, c) composing the Bc meson are
heavy, their weak decays contribute comparably to the to-
tal decay rate. Thus there are two distinctive decay modes:
(i) b̄ → c̄, ū with c quark being a spectator, and
(ii) c → s, d with b̄ quark being a spectator. The transition
(i) induce the semileptonic Bc decays to charmonium and
D mesons, while the transitions (ii) cause the Bc decays to
Bs and B mesons. The kinematical ranges of these semilep-
tonic decay modes are substantially different. The square
of the four momentum transfer to the lepton pair extends
from 0 to q2

max ≈ 10 GeV2 for the decays to charmonium
and q2

max ≈ 18 GeV2 for decays to D mesons, but only to
q2
max ≈ 1 GeV2 for decays to B and Bs mesons. Thus the

kinematical range for the decay mode (i) is appreciably
larger than for the decay mode (ii). Otherwise in the Bc

rest frame the maximum recoil three momentum of the
final charmonium and D meson turns out to be of order of

their masses, while that of final B and Bs mesons is much
smaller than the meson masses.

The weak Bc decays to charmonium and D mesons
were studied at length in our recent paper [3]. Here we
consider the weak Bc decays to Bs and B mesons within
the relativistic quark model. The model is based on the
quasipotential approach in quantum field theory and was
fruitfully applied for describing the electroweak decays and
mass spectra of heavy-light mesons, heavy quarkonia [4–9]
and Bc meson [10]. The relativistic wave functions ob-
tained in the latter paper are used below to calculate the
transition matrix elements. The consistent theoretical de-
scription of Bc decays requires a reliable determination of
the q2 dependence of the decay amplitudes in the whole
kinematical range. In most previous calculations the corre-
sponding decay form factors were determined only at one
kinematical point, either q2 = 0 or q2 = q2

max, and then
extrapolated to the allowed kinematical range using some
phenomenological ansatz (mainly (di)pole or Gaussian).
Our aim is to explicitly determine the q2 dependence of
form factors in the whole kinematical range thus avoiding
extrapolations and reducing uncertainties.

This paper is organized as follows. In Sect. 2 we describe
the underlying relativistic quark model. The method for
calculating matrix elements of the weak current for c → s, d
transitions in Bc meson decays is presented in Sect. 3. Spe-
cial attention is paid to the dependence on the momen-
tum transfer of the decay amplitudes. The Bc decay form
factors are calculated in the whole kinematical range in
Sect. 4. The q2 dependence of the form factors is explicitly
determined. These form factors are used for the calcula-
tion of the Bc semileptonic decay rates in Sect. 5. Section 6
contains our predictions for the energetic non-leptonic Bc
decays in the factorization approximation, and a compar-
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ison of our results with other theoretical calculations is
presented. Our conclusions are given in Sect. 7. Finally,
the appendix contains complete expressions for the decay
form factors.

2 Relativistic quark model

In the quasipotential approach a meson is described by the
wave function of the bound quark–antiquark state, which
satisfies the quasipotential equation [11] of the Schrödinger
type [12](

b2(M)
2µR

− p2

2µR

)
ΨM (p) =

∫
d3q

(2π)3
V (p,q; M)ΨM (q),

(1)
where the relativistic reduced mass is

µR =
E1E2

E1 + E2
=

M4 − (m2
1 − m2

2)
2

4M3 , (2)

and E1, E2 are the center of mass energies on mass shell
given by

E1 =
M2 − m2

2 + m2
1

2M
, E2 =

M2 − m2
1 + m2

2

2M
. (3)

Here M = E1 + E2 is the meson mass, m1,2 are the quark
masses, and p is their relative momentum. In the center
of mass system the relative momentum squared on mass
shell reads

b2(M) =
[M2 − (m1 + m2)2][M2 − (m1 − m2)2]

4M2 . (4)

The kernel V (p,q; M) in (1) is the quasipotential oper-
ator of the quark–antiquark interaction. It is constructed
with the help of the off mass shell scattering amplitude,
projected onto the positive-energy states. Constructing the
quasipotential of the quark–antiquark interaction, we have
assumed that the effective interaction is the sum of the
usual one-gluon exchange term with a mixture of long-
range vector and scalar linear confining potentials, where
the vector confining potential contains the Pauli interac-
tion. The quasipotential is then defined by [4]

V (p,q; M) = ū1(p)ū2(−p)V(p,q; M)u1(q)u2(−q), (5)

with

V(p,q; M) =
4
3
αsDµν(k)γµ

1 γν
2 +V V

conf(k)Γµ
1 Γ2;µ+V S

conf(k),

where αs is the QCD coupling constant, Dµν is the gluon
propagator in the Coulomb gauge

D00(k) = −4π

k2 ,

Dij(k) = −4π

k2

(
δij − kikj

k2

)
, D0i = Di0 = 0, (6)

and k = p − q; γµ and u(p) are the Dirac matrices and
spinors

uλ(p) =

√
ε(p) + m

2ε(p)


 1

σp
ε(p) + m


χλ. (7)

Here σ and χλ are the Pauli matrices and spinors;
ε(p) =

√
p2 + m2. The effective long-range vector vertex

is given by

Γµ(k) = γµ +
iκ
2m

σµνkν , (8)

where κ is the Pauli interaction constant characterizing the
long-range anomalous chromomagnetic moment of quarks.
Vector and scalar confining potentials in the non-relativ-
istic limit reduce to

VV (r) = (1 − ε)Ar + B,

VS(r) = εAr, (9)

reproducing

Vconf(r) = VS(r) + VV (r) = Ar + B, (10)

where ε is the mixing coefficient.
The expression for the quasipotential of the heavy

quarkonia, expanded in v2/c2 without and with retarda-
tion corrections to the confining potential, can be found
in [4] and [5, 10], respectively. The structure of the spin-
dependent interaction is in agreement with the parame-
terization of Eichten and Feinberg [13]. The quasipoten-
tial for the heavy quark interaction with a light antiquark
without employing the expansion in inverse powers of the
light quark mass is given in [6]. All the parameters of our
model like quark masses, parameters of the linear confin-
ing potential A and B, mixing coefficient ε and anomalous
chromomagnetic quark moment κ are fixed from the anal-
ysis of heavy quarkonium masses [4] and radiative decays
[7]. The quark masses mb = 4.88 GeV, mc = 1.55 GeV,
ms = 0.50 GeV, mu,d = 0.33 GeV and the parameters of
the linear potential A = 0.18 GeV2 and B = −0.16 GeV
have the usual values of the quark models. The value of
the mixing coefficient of vector and scalar confining po-
tentials ε = −1 has been determined from the consider-
ation of the heavy quark expansion for the semileptonic
B → D decays [8] and charmonium radiative decays [7].
Finally, the universal Pauli interaction constant κ = −1
has been fixed from the analysis of the fine splitting of
heavy quarkonia 3PJ - states [4]. Note that the long-range
magnetic contribution to the potential in our model is
proportional to (1 + κ) and thus vanishes for the chosen
value of κ = −1. It has been known for a long time that
the correct reproduction of the spin-dependent part of the
quark–antiquark interaction requires either assuming the
scalar confinement or equivalently introducing the Pauli
interaction with κ = −1 [4, 5, 14] in the vector confine-
ment.
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Fig. 1. Lowest order vertex function
Γ (1) contributing to the current matrix
element (11)

Fig. 2. Vertex function Γ (2) taking the quark interaction into account. Dashed lines
correspond to the effective potential V in (5). Bold lines denote the negative-energy
part of the quark propagator

3 Matrix elements of the electroweak current
for c → s, d transitions

In order to calculate the exclusive semileptonic decay rate
of the Bc meson, it is necessary to determine the cor-
responding matrix element of the weak current between
meson states. In the quasipotential approach, the matrix
element of the weak current JW

µ = q̄γµ(1−γ5)c, associated
with c → q (q = s or d) transition, between a Bc meson
with mass MBc and momentum pBc and a final meson F

(F = B
(∗)
s or B(∗)) with mass MF and momentum pF

takes the form [15]

〈F (pF )|JW
µ |Bc(pBc)〉

=
∫

d3p d3q

(2π)6
Ψ̄F pF

(p)Γµ(p,q)ΨBc pBc
(q), (11)

where Γµ(p,q) is the two-particle vertex function and
ΨM pM

are the meson (M = Bc, F ) wave functions pro-
jected onto the positive-energy states of quarks and boost-
ed to the moving reference frame with momentum pM .

The contributions to Γ come from Figs. 1 and 2. The
contribution Γ (2) is the consequence of the projection onto
the positive-energy states. Note that the form of the rela-
tivistic corrections resulting from the vertex function Γ (2)

is explicitly dependent on the Lorentz structure of the
quark–antiquark interaction. In the leading order of the
v2/c2 expansion for Bc and in the heavy quark limit mb →
∞ for Bs, B only Γ (1) contributes, while Γ (2) contributes
already at the subleading order. The vertex functions look
like

Γ (1)
µ (p,q) = ūq(pq)γµ(1−γ5)uc(qc)(2π)3δ(pb −qb), (12)

and

Γ (2)
µ (p,q) = ūq(pq)ūb(pb)

×
{
γ1µ(1 − γ5

1)
Λ

(−)
c (k)

εc(k) + εc(pq)
γ0
1V(pb − qb)

+V(pb − qb)
Λ

(−)
q (k′)

εq(k′) + εq(qc)
γ0
1γ1µ

(
1 − γ5

1
)}

× uc(qc)ub(qb), (13)

where the superscripts “(1)” and “(2)” correspond to
Figs. 1 and 2, k = pq − ∆; k′ = qc + ∆; ∆ = pF − pBc

;

Λ(−)(p) =
ε(p) − (mγ0 + γ0(γp))

2ε(p)
.

Here [15]

pq,b = εq,b(p)
pF

MF
±

3∑
i=1

n(i)(pF )pi,

qc,b = εc,b(q)
pBc

MBc

±
3∑

i=1

n(i)(pBc)q
i,

and n(i) are three four-vectors given by

n(i)µ(p) =
{

pi

M
, δij +

pipj

M(E + M)

}
, E =

√
p2 + M2.

It is important to note that the wave functions enter-
ing the weak current matrix element (11) are not in the
rest frame in general. For example, in the Bc meson rest
frame (pBc = 0), the final meson is moving with the re-
coil momentum ∆. The wave function of the moving meson
ΨF ∆ is connected with the wave function in the rest frame
ΨF 0 ≡ ΨF by the transformation [15]

ΨF ∆(p) = D1/2
q (RW

L∆
)D1/2

b (RW
L∆

)ΨF 0(p), (14)

where RW is the Wigner rotation, L∆ is the Lorentz boost
from the meson rest frame to a moving one, and the rota-
tion matrix D1/2(R) in a spinor representation is given by(

1 0
0 1

)
D

1/2
q,b (RW

L∆
) = S−1(pq,b)S(∆)S(p), (15)

where

S(p) =

√
ε(p) + m

2m

(
1 +

αp
ε(p) + m

)
is the usual Lorentz transformation matrix of the four-
spinor.

The general structure of the current matrix element
(11) is rather complicated, because it is necessary to in-
tegrate both with respect to d3p and d3q. The δ-function
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in the expression (12) for the vertex function Γ (1) per-
mits one to perform one of these integrations. As a result
the contribution of Γ (1) to the current matrix element has
the usual structure of an overlap integral of meson wave
functions and can be calculated exactly (without employ-
ing any expansion) in the whole kinematical range, if the
wave functions of the initial and final mesons are known.
The situation with the contribution Γ (2) is different. Here,
instead of a δ-function, we have a complicated structure,
containing the potential of the qq̄ interaction in a me-
son. Thus in the general case we cannot accomplish one of
the integrations in the contribution of Γ (2) to the matrix
element (11). Therefore, one should use some additional
considerations in order to simplify calculations. The main
idea is to expand the vertex function Γ (2), given by (13), in
such a way that it will be possible to use the quasipotential
equation (1) in order to perform one of the integrations in
the current matrix element (11).

The natural expansion parameters for Bc decays to Bs,
B mesons are the active c and spectator b quark masses.
However, the heavy c quark undergoes a weak transition to
the light s or d quark. The constituent s, d quark masses
are of the same order of magnitude as the relative mo-
mentum and binding energy, thus we cannot apply the
expansion in inverse powers of their masses. The heavy
quark expansion in 1/mc,b significantly simplifies the struc-
ture of the Γ (2) contribution to the decay matrix element,
but the momentum p dependence of the light quark en-
ergies εq(p) still prevents to perform one of the integra-
tions. It is important to note that the kinematically al-
lowed range for Bc decays to Bs and B meson is not large
(|∆max| = (M2

Bc
− M2

F )/(2MBc) ∼ 0.8 GeV for decays to
Bs and ∼ 0.9 GeV for decays to B mesons). This means
that the recoil momentum ∆ of a final meson is of the
same order as the relative momentum p of quarks inside
a heavy-light meson (∼ 0.5 GeV) in the whole kinematical
range. Taking also into account that the final Bs and B
mesons are weakly bound [6], 1 we can replace the light
quark energies by the center of mass energies on mass
shell εq(p) → Eq = (M2

F − m2
b + m2

q)/(2MF ). We used
such a substitution in our analysis of heavy-light meson
mass spectra [6] which allowed us to treat the light quark
relativistically without an unjustified expansion in inverse
powers of its mass. Making these replacements and expan-
sions we see that it is possible to integrate the current ma-
trix element (11) either with respect to d3p or d3q using
the quasipotential equation (1). Performing integrations
and taking the sum of the contributions Γ (1) and Γ (2) we
get the expression for the current matrix element, which
contains ordinary overlap integrals of meson wave func-
tions and is valid in the whole kinematical range. Hence
the matrix element can be easily calculated using numeri-
cal wave functions found in our analysis of the meson mass
spectra [5, 10].

1 The sum of constituent quark masses mb +mq is very close
to the ground state meson mass M .

4 Bc decay form factors

The matrix elements of the weak current JW for Bc decays
to pseudoscalar mesons (P = Bs, B) can be parametrized
by two invariant form factors:

〈P (pF )|q̄γµc|Bc(pBc)〉

= f+(q2)
[
pµ

Bc
+ pµ

F − M2
Bc

− M2
P

q2 qµ

]

+f0(q2)
M2

Bc
− M2

P

q2 qµ, (16)

where q = pBc − pF ; MBc is the Bc meson mass and MP

is the pseudoscalar meson mass.
The corresponding matrix elements for Bc decays to

vector mesons (V = B∗
s , B∗) are parametrized by four

form factors

〈V (pF )|q̄γµc|B(pBc)〉 =
2iV (q2)

MBc + MV
εµνρσε∗

νpBcρpFσ,(17)

〈V (pF )|q̄γµγ5c|B(pBc)〉

= 2MV A0(q2)
ε∗ · q

q2 qµ

+(MBc + MV )A1(q2)
(

ε∗µ − ε∗ · q

q2 qµ

)
(18)

−A2(q2)
ε∗ · q

MBc + MV

[
pµ

Bc
+ pµ

F − M2
Bc

− M2
V

q2 qµ

]
,

where MV and εµ are the mass and polarization vector
of the final vector meson. The following relations hold for
the form factors at the maximum recoil point of the final
meson (q2 = 0):

f+(0) = f0(0),

A0(0) =
MBc + MV

2MV
A1(0) − MBc − MV

2MV
A2(0).

In the limit of vanishing lepton mass, the form factors f0
and A0 do not contribute to the semileptonic decay rates.
However, they contribute to the non-leptonic decay rates
in the factorization approximation.

It is convenient to consider Bc semileptonic and non-
leptonic decays in the Bc meson rest frame. Then it is
important to take into account the boost of the final me-
son wave function from the rest reference frame to the
moving one with the recoil momentum ∆, given by (14).
Now we can apply the method for calculating decay ma-
trix elements described in the previous section. As it is
argued above, the leading contributions arising from the
vertex function Γ (1) can be exactly expressed through the
overlap integrals of the meson wave functions in the whole
kinematical range. For the subleading contribution Γ (2),
the expansion in powers of the ratio of the relative quark
momentum p to heavy quark masses mb,c should be per-
formed. Taking into account that the recoil momentum of
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Table 1. Form factors of weak Bc decays (c → s(d) transitions)

Transition f+(q2) f0(q2) V (q2) A1(q2) A2(q2) A0(q2)
Bc → Bs(B∗

s )
q2 = q2

max 0.99 0.86 6.25 0.76 2.62 0.91
q2 = 0 0.50 0.50 3.44 0.49 2.19 0.35
Bc → B(B∗)
q2 = q2

max 0.96 0.80 8.91 0.72 2.83 1.06
q2 = 0 0.39 0.39 3.94 0.42 2.89 0.20

the final meson ∆ is not large we replace the final light
quark energies εq(p) by the center of mass energies on
mass shell Eq. Such a replacement is well justified near
the point of zero recoil of the final Bs, B meson. The weak
dependence of this subleading contribution on the recoil
momentum and its numerical smallness due to its propor-
tionality to the small meson binding energy permits its
extrapolation to the whole kinematical range. As a result,
we get the following expressions for the Bc decay form fac-
tors:

(a) Bc → P transitions (P = Bs, B)

f+(q2) = f
(1)
+ (q2) + εf

S(2)
+ (q2) + (1 − ε)fV (2)

+ (q2), (19)

f0(q2) = f
(1)
0 (q2) + εf

S(2)
0 (q2) + (1 − ε)fV (2)

0 (q2), (20)

(b) Bc → V transitions (V = B∗
s , B∗)

V (q2) = V (1)(q2) + εV S(2)(q2) + (1 − ε)V V (2)(q2),
(21)

A1(q2) = A
(1)
1 (q2) + εA

S(2)
1 (q2) + (1 − ε)AV (2)

1 (q2), (22)

A2(q2) = A
(1)
2 (q2) + εA

S(2)
2 (q2) + (1 − ε)AV (2)

2 (q2), (23)

A0(q2) = A
(1)
0 (q2) + εA

S(2)
0 (q2) + (1 − ε)AV (2)

0 (q2), (24)

where f
(1)
+,0, f

S,V (2)
+,0 , A

(1)
0,1,2, A

S,V (2)
0,1,2 , V (1) and V S,V (2) are

given in the appendix. The superscripts “(1)” and “(2)”
correspond to Figs. 1 and 2, S and V to the scalar and vec-
tor potentials of the qq̄ interaction. The mixing parameter
of scalar and vector confining potentials ε is fixed to be
−1 in our model.

It is easy to check that in the heavy quark limit the
decay matrix elements (16)–(18) with form factors (19)–
(24) satisfy the heavy quark spin symmetry relations [16]
obtained near the zero recoil point (∆ → 0).

For numerical calculations we use the quasipotential
wave functions of the Bc meson, and the Bs and B mesons,
obtained in the mass spectrum calculations [5, 6]. Our
model predicts the Bc meson mass MBc = 6.270 GeV [10],
while for the B

(∗)
s and B(∗) meson masses we use the ex-

perimental data [17]. The calculated values of the form
factors at zero (q2 = q2

max) and maximum (q2 = 0) recoil
of the final meson are listed in Table 1. In Fig. 3 we plot
leading f

(1)
+ and subleading f

S(2)
+ , f

V (2)
+ contributions to
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Fig. 3. Leading f
(1)
+ and subleading f

S(2)
+ , f

V (2)
+ contributions

to the form factor f+ for the Bc → Bs transition

the form factor f+ for the Bc → Bs transition, as an exam-
ple. We see that the leading contribution f

(1)
+ is dominant

in the whole kinematical range, as it was expected. The
subleading contributions f

S(2)
+ , f

V (2)
+ are small and weakly

depend on q2. The behavior of the corresponding contri-
butions to the other form factors is similar. This supports
our conjecture that the formulae (38)–(55) can be applied
for the calculation of the form factors of Bc → Bs(B)(∗)

transitions in the whole kinematical range.
In Figs. 4–7 we plot the calculated q2 dependence of

the weak form factors of the Cabibbo–Kobayashi–Maskawa
(CKM) favored (Bc → Bs, Bc → B∗

s ), as well as CKM
suppressed (Bc → B, Bc → B∗) transitions in the whole
kinematical range.

In the following sections we use the obtained form fac-
tors for the calculation of the semileptonic and non-leptonic
Bc decay rates.

5 Semileptonic decays

The differential semileptonic decay rates can be expressed
in terms of the form factors as follows.
(a) Bc → Peν decays (P = Bs, B)

dΓ

dq2 (Bc → Peν) =
G2

F∆3|Vcq|2
24π3 |f+(q2)|2. (25)

(b) Bc → V eν decays (V = B∗
s , B∗)

dΓ

dq2 (Bc → V eν) (26)

=
G2

F∆|Vcq|2
96π3

q2

M2
Bc

(|H+(q2)|2 + |H−(q2)|2 + |H0(q2)|2) ,

where GF is the Fermi constant, Vcq is the CKM matrix
element (q = s, d),

∆ ≡ |∆| =

√
(M2

Bc
+ M2

P,V − q2)2

4M2
Bc

− M2
P,V .
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Fig. 4. Form factors of the Bc → Bseν decay Fig. 6. Form factors of the Bc → Beν decay

Fig. 5. Form factors of the Bc → B∗
s eν decay Fig. 7. Form factors of the Bc → B∗eν decay

The helicity amplitudes are given by

H±(q2) =
2MBc

∆
MBc + MV

[
V (q2) ∓ (MBc

+ MV )2

2MBc∆
A1(q2)

]
,

(27)

H0(q2) =
1

2MV

√
q2

×
[(

MBc + MV )(M2
Bc

− M2
V − q2)A1(q2)

− 4M2
Bc

∆2

MBc + MV
A2(q2)

]
. (28)

The decay rates to the longitudinally and transversely po-
larized vector mesons are defined by

dΓL

dq2 =
G2

F∆|Vcq|2
96π3

q2

M2
Bc

|H0(q2)|2, (29)

dΓT

dq2 =
dΓ+

dq2 +
dΓ−
dq2 (30)

=
G2

F∆|Vcq|2
96π3

q2

M2
Bc

(|H+(q2)|2 + |H−(q2)|2) .

In Figs. 8–11 we plot the differential semileptonic decay
rates dΓ/dq2 for semileptonic decays Bc → B

(∗)
s eν and

Bc → B(∗)eν calculated in our model using (25) and (26)
both with and without account of 1/mb,c corrections to
the decay form factors (38)–(55). 2 From these plots we
see that relativistic effects related to heavy quarks increase
the rates of semileptonic Bc decays to the pseudoscalar Bs

and B mesons and decrease the rates of semileptonic decays
to vector B∗

s and B∗ mesons.
We calculate the total rates of the semileptonic Bc

decays to the B
(∗)
s and B(∗) mesons integrating the corre-

sponding differential decay rates over q2. For calculations
we use the following values of the CKM matrix elements:
|Vcs| = 0.974, |Vcd| = 0.223. The results are given in Ta-
ble 2 in comparison with predictions of other approaches
based on quark models [18, 20, 21, 23, 24, 26], QCD sum
rules [19] and on the application of heavy quark sym-
metry relations [22, 25] to the quark model. Our predic-

2 Relativistic wave functions were used for both calculations.
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Fig. 8. Differential decay rates (1/|Vcs|2)dΓ/dq2 of Bc → Bseν
decay (in 10−12 GeV−1). The lower curve is evaluated without
account of 1/mb,c corrections

Fig. 10. Differential decay rate (1/|Vcd|2)dΓ/dq2 of Bc → Beν
decay (in 10−12 GeV−1). The lower curve is evaluated without
account of 1/mb,c corrections

Fig. 9. Differential decay rates (1/|Vcs|2)dΓ/dq2 of Bc → B∗
s eν

decay (in 10−12 GeV−1). The upper curve is evaluated without
account of 1/mb,c corrections

Fig. 11. Differential decay rates (1/|Vcd|2)dΓ/dq2 of Bc →
B∗eν decay (in 10−12 GeV−1). The upper curve is evaluated
without account of 1/mb,c corrections

Table 2. Semileptonic decay rates Γ of Bc to B
(∗)
s and B(∗) mesons (in 10−15 GeV)

Decay Our result [18] [19] [20] [21] [22] [23] [24] [25] [26]
Bc → Bseν 12 29 59 14.3 26.6 11.1(12.9) 15 12.3 11.75 26.8
Bc → B∗

s eν 25 37 65 50.4 44.0 33.5(37.0) 34 19.0 32.56 34.6
Bc → Beν 0.6 2.1 4.9 1.14 2.30 0.9(1.0) 0.59 1.90
Bc → B∗eν 1.7 2.3 8.5 3.53 3.32 2.8(3.2) 2.44 2.34

tions for the CKM favored semileptonic Bc decays to B
(∗)
s

are smaller than those of QCD sum rules [19] and quark
models [18, 20, 21, 26], but agree with quark model re-
sults [22–25]. For the CKM suppressed semileptonic decays
of Bc to B(∗) mesons our results are in agreement with the
ones based on the application of heavy quark symmetry
relations [22,25] to the quark model.

In Table 3 we present for completeness our predictions
for the rates of the semileptonic Bc decays to vector (B∗

s

and B∗) mesons with longitudinal (L) or transverse (T)
polarization and to the states with helicities λ = ±1, as
well as their ratios.

Table 3. Semileptonic decay rates ΓL,T,+,− (in 10−15 GeV)
and their ratios for Bc decays to vector B∗

s and B∗ mesons

Decay ΓL ΓT ΓL/ΓT Γ+ Γ− Γ+/Γ−
Bc → B∗

s eν 10.5 14.5 0.74 3.1 11.4 0.27
Bc → B∗eν 0.57 1.13 0.50 0.13 1.0 0.13

6 Non-leptonic decays

In the standard model non-leptonic Bc decays are de-
scribed by the effective Hamiltonian, obtained by integrat-
ing out the heavy W -boson and top quark. For the case of
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c → s, d transitions, one gets

Heff =
GF√

2
Vcs [c1(µ)Ocs

1 + c2(µ)Ocs
2 ]

+
GF√

2
Vcd

[
c1(µ)Ocd

1 + c2(µ)Ocd
2
]
+ . . . (31)

The Wilson coefficients c1,2(µ) are evaluated perturba-
tively at the W scale and then are evolved down to the
renormalization scale µ ≈ mc by the renormalization-
group equations. The ellipsis denote the penguin opera-
tors, the Wilson coefficients of which are numerically much
smaller than c1,2. The local four-quark operators O1 and
O2 are given by

Ocq
1 = (d̃u)V −A(c̄q)V −A, (32)

Ocq
2 = (c̄u)V −A(d̃q)V −A, q = (s, d),

where the rotated antiquark field is

d̃ = Vudd̄ + Vuss̄, (33)

and for the hadronic current the following notation is used:

(q̄q′)V −A = q̄γµ(1 − γ5)q′ ≡ JW
µ .

The factorization approach, which is extensively used
for the calculation of two-body non-leptonic decays, such
as Bc → FM , assumes that the non-leptonic decay ampli-
tude reduces to the product of a form factor and a decay
constant [27]. This assumption in general cannot be exact.
However, it is expected that factorization can hold for the
energetic decays, where the final F meson is heavy and the
M meson is light [28]. A justification of this assumption
is usually based on the issue of color transparency [29]. In
these decays the final hadrons are produced in the form
of point-like color-singlet objects with a large relative mo-
mentum. And thus the hadronization of the decay products
occurs after they are too far away for strongly interacting
with each other. That provides the possibility to avoid
the final state interaction. A more general treatment of
factorization is given in [30,31].

In this paper we consider the following two types of
non-leptonic decays:

(a) B+
c → B

(∗)
s (B(∗)0)M+ and

(b) B+
c → B(∗)+M0, where the final light M+ and M0

mesons are π, ρ or K(∗). The corresponding diagrams are
shown in Fig. 12, where q, q1 = d, s and q2 = u. Then in
the factorization approximation the decay amplitudes can
be expressed through the product of one-particle matrix
elements

〈F 0M+|Heff |B+
c 〉 (34)

=
GF√

2
VcqVq1q2a1〈F |(c̄q)V −A|Bc〉〈M |(q̄1q2)V −A|0〉,

〈B(∗)+M0|Heff |B+
c 〉 (35)

Fig. 12. Quark diagrams for the non-leptonic Bc decays: a
B+

c → F 0M+ decay; b B+
c → B+M0 decay

=
GF√

2
VcqVq1q2a2〈B(∗)|(c̄q2)V −A|Bc〉〈M |(q̄1q)V −A|0〉,

where

a1 = c1(µ) +
1

Nc
c2(µ), a2 = c2(µ) +

1
Nc

c1(µ), (36)

and Nc is the number of colors.
The matrix element of the current JW

µ between vac-
uum and final pseudoscalar (P ) or vector (V ) meson is
parametrized by the decay constants fP,V

〈P |q̄1γ
µγ5q2|0〉 = ifP pµ

P , 〈V |q̄1γµq2|0〉 = εµMV fV .
(37)

We use the following values of the decay constants: fπ =
0.131 GeV, fρ = 0.208 GeV, fK = 0.160 GeV and fK∗ =
0.214 GeV. The CKM matrix elements are |Vud| = 0.975,
|Vus| = 0.222.

The matrix elements of the weak current between the
Bc meson and the final B

(∗)
s , B meson entering the factor-

ized non-leptonic decay amplitude (34) are parametrized
by the set of decay form factors defined in (16) and (17). Us-
ing the form factor values obtained in Sect. 4, we get predic-
tions for the non-leptonic B+

c → F 0M+ and B+
c → B+M0

decay rates and give them in Table 4 in comparison with
other calculations [19–23,26].

In Tables 2 and 4 we confront the predictions of our
model for semileptonic and non-leptonic Bc decays with
previous calculations [18–26]. The constituent quark mod-
els of [18,24] are based on the same effective quark–meson
Lagrangian but use different phenomenological parame-
terizations (Gaussian [18] and dipole [24]) for the vertex
functions, which are assumed to depend only on the loop
momentum flowing through the vertex. The relativistic
quark models of [20,21,26] use different reductions of the
Bethe–Salpeter (BS) equation. The authors of [21] apply
a non-relativistic instantaneous approximation to the de-
cay matrix elements and relate the BS wave functions to
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Table 4. Non-leptonic decay rates Γ (in 10−15 GeV)

Decay Our result [19] [20] [21] [23] [22] [26]
B+

c → Bsπ
+ 25a2

1 167a2
1 15.8a2

1 58.4a2
1 34.8a2

1 30.6a2
1 65.1a2

1

B+
c → Bsρ

+ 14a2
1 72.5a2

1 39.2a2
1 44.8a2

1 23.6a2
1 13.6a2

1 42.7a2
1

B+
c → B∗

s π+ 16a2
1 66.3a2

1 12.5a2
1 51.6a2

1 19.8a2
1 35.6a2

1 25.3a2
1

B+
c → B∗

s ρ+ 110a2
1 204a2

1 171a2
1 150a2

1 123a2
1 110.1a2

1 139.6a2
1

B+
c → BsK

+ 2.1a2
1 10.7a2

1 1.70a2
1 4.20a2

1 2.15a2
1 4.69a2

1

B+
c → BsK

∗+ 0.03a2
1 1.06a2

1 0.043a2
1 0.296a2

1

B+
c → B∗

s K+ 1.1a2
1 3.8a2

1 1.34a2
1 2.96a2

1 1.6a2
1 1.34a2

1

B+
c → B0π+ 1.0a2

1 10.6a2
1 1.03a2

1 3.30a2
1 1.50a2

1 1.97a2
1 3.64a2

1

B+
c → B0ρ+ 1.3a2

1 9.7a2
1 2.81a2

1 5.97a2
1 1.93a2

1 1.54a2
1 4.03a2

1

B+
c → B∗0π+ 0.26a2

1 9.5a2
1 0.77a2

1 2.90a2
1 0.78a2

1 2.4a2
1 1.22a2

1

B+
c → B∗0ρ+ 6.8a2

1 26.1a2
1 9.01a2

1 11.9a2
1 6.78a2

1 8.6a2
1 8.16a2

1

B+
c → B0K+ 0.09a2

1 0.70a2
1 0.105a2

1 0.255a2
1 0.14a2

1 0.272a2
1

B+
c → B0K∗+ 0.04a2

1 0.15a2
1 0.125a2

1 0.180a2
1 0.032a2

1 0.0965a2
1

B+
c → B∗0K+ 0.04a2

1 0.56a2
1 0.064a2

1 0.195a2
1 0.12a2

1 0.0742a2
1

B+
c → B∗0K∗+ 0.33a2

1 0.59a2
1 0.665a2

1 0.374a2
1 0.34a2

1 0.378a2
1

B+
c → B+K̄0 34a2

2 286a2
2 39.1a2

2 96.5a2
2 24.0a2

2 103.4a2
2

B+
c → B+K̄∗0 13a2

2 64a2
2 46.8a2

2 68.2a2
2 13.8a2

2 36.6a2
2

B+
c → B∗+K̄0 15a2

2 231a2
2 24.0a2

2 73.3a2
2 8.9a2

2 28.9a2
2

B+
c → B∗+K̄∗0 120a2

2 242a2
2 247a2

2 141a2
2 82.3a2

2 143.6a2
2

B+
c → B+π0 0.5a2

2 5.3a2
2 0.51a2

2 1.65a2
2 1.03a2

2

B+
c → B+ρ0 0.7a2

2 4.4a2
2 1.40a2

2 2.98a2
2 1.28a2

2

B+
c → B∗+π0 0.13a2

2 4.8a2
2 0.38a2

2 1.45a2
2 0.53a2

2

B+
c → B∗+ρ0 3.4a2

2 13.1a2
2 4.50a2

2 5.96a2
2 4.56a2

2

the Schrödinger ones. They do not give sufficient informa-
tion about the quark interaction potential in their model.
The quark models [20,26] are based on the instantaneous
approximation and different versions of the quasipoten-
tial equation. The meson wave functions are obtained by
solving these equations with the one-gluon exchange plus
the long-range scalar linear potentials. The light-front rela-
tivistic quark model is used in [23]. The decay form factors
are expressed through the overlap integrals of the meson
light-front wave functions which are related to the equal-
time wave functions. The latter are expressed through the
Gaussian functions. The heavy quark spin symmetry rela-
tions [16] and constituent quark models are used in [22,25].
This symmetry permits one to relate the Bc weak decay
form factors to a few invariant functions near the zero re-
coil point. These invariant functions are determined from
the wave equation with the Richardson potential [22] or
by the Gaussian wave functions [25]. Then they are ex-
trapolated to the whole kinematical range accessible in Bc
decays. The authors of [19] employ three-point QCD sum
rules taking into account the Coulomb-like αs/v correc-
tions. The values of the form factors are determined in the
vicinity of q2 = 0 and then are extrapolated to the allowed
kinematical region using the pole ansatz.

Our relativistic quark model provides the selfconsistent
dynamical approach for the calculation of various meson
properties. The meson wave functions in this approach are
obtained as the solutions of the relativistic quasipotential
equation. The weak decay matrix elements are expressed

in terms of these wave functions. It allows us to deter-
mine explicitly the q2 dependence of the form factors of
the weak Bc decays in the whole kinematical range. All rel-
evant relativistic effects are taken into account (including
the boost of the wave functions to the moving reference
frame). The light quarks in the final heavy-light meson are
treated relativistically. All that increases the reliability of
the obtained results.

As one sees from Tables 2 and 4 the theoretical pre-
dictions for Bc weak decay rates differ substantially. Thus
experimental measurements of corresponding decay rates
can discriminate between various approaches.

7 Conclusions

In this paper we considered weak semileptonic and non-
leptonic Bc decays to Bs and B mesons, associated with
the c → s, d quark transition, in the framework of the
relativistic quark model based on the quasipotential ap-
proach in quantum field theory. The weak decay form fac-
tors were calculated explicitly in the whole kinematical
range using the heavy quark expansion for the initial ac-
tive quark c and spectator quark b̄. The final quark s or
d was treated completely relativistically without applying
an unjustified expansion in inverse powers of its mass. The
leading order contribution of the heavy quark expansion
was treated exactly, while in calculating the subleading
order contribution the replacement of light quark energies
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Table 5. Branching fractions (in %) of exclusive Bc decays calculated for
the fixed values of the Bc lifetime τBc = 0.46 ps and a1 = 1.20, a2 = −0.317

Decay Br Decay Br Decay Br
Bc → Bseν 0.84 B+

c → BsK
∗+ 0.003 B+

c → B∗0K∗+ 0.033
Bc → B∗

s eν 1.75 B+
c → B∗

s K+ 0.11 B+
c → B+K̄0 0.24

Bc → Beν 0.042 B+
c → B0π+ 0.10 B+

c → B+K̄∗0 0.09
Bc → B∗eν 0.12 B+

c → B0ρ+ 0.13 B+
c → B∗+K̄0 0.11

B+
c → Bsπ

+ 2.52 B+
c → B∗0π+ 0.026 B+

c → B∗+K̄∗0 0.84
B+

c → Bsρ
+ 1.41 B+

c → B∗0ρ+ 0.68 B+
c → B+π0 0.004

B+
c → B∗

s π+ 1.61 B+
c → B0K+ 0.009 B+

c → B+ρ0 0.005
B+

c → B∗
s ρ+ 11.1 B+

c → B0K∗+ 0.004 B+
c → B∗+π0 0.001

B+
c → BsK

+ 0.21 B+
c → B∗0K+ 0.004 B+

c → B∗+ρ0 0.024

εq(p) (q = s, d) by the center of mass energies Eq on mass
shell was performed. It was shown that such substitution
introduces only minor errors which are of the same order
as the higher order terms in the heavy quark expansion.
Thus the decay form factors were evaluated up to the sub-
leading order of the heavy quark expansion. The overall
subleading contributions are small and weakly depend on
the momentum transfer q2.

We calculated semileptonic and non-leptonic (in fac-
torization approximation) Bc decay rates. Our predictions
for the branching fractions are summarized in Table 5,
where we use the central experimental value of the Bc

meson lifetime [17]. From this table we see that the con-
sidered semileptonic decays to Bs and B mesons give in
total ∼ 2.0% of the Bc decay rate, while the energetic
non-leptonic decays provide the dominant contribution
∼ 19.3%. In our recent paper [3] we calculated weak Bc

decays to charmonium and D mesons, associated with
b̄ → c̄, ū quark transition. It was found that the semilep-
tonic decays to the ground and first radially excited states
of charmonium and to D mesons yield ∼ 1.7% and cor-
responding energetic non-leptonic decays (to charmonium
and K(∗) or π, ρ mesons) contribute ∼ 0.6%. All these de-
cays (to Bs, B, charmonium and D mesons) add up to
∼ 23.6% of the Bc total decay rate.
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by the Deutsche Forschungsgemeinschaft under contract Eb
139/2-2.

A Form factors of weak Bc decays

(a) Bc → P transitions (P = Bs, B)
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2mb

EP + MP
∆
)

− εb

(
p +

2mb

EP + MP
∆
)]

+(p∆)
(

MBc − EBc

mq

(
Eq − mq

Eq + mq

[
1 − Eq + mq

2mc

]

×[MBc − εb(p) − εc(p)] −
[
1 − Eq − mq

2mc

]

×
[
MP − εq

(
p +

2mb

EP + MP
∆
)

−εb

(
p +

2mb

EP + MP
∆
)])

− 1
mb

[
mq

Eq + mq
(MBc − EBc − Eq − mq) + Eq − mq

]

×
[
MBc

+ MP − εb(p) − εc(p)

−εq

(
p +

2mb

EP + MP
∆
)

−εb

(
p +

2mb

EP + MP
∆
)])}

ΨBc
(p),

where

|∆| =

√
(M2

Bc
+ M2

P − q2)2

4M2
Bc

− M2
P ,

EP =
√

M2
P + ∆2, εQ(p + λ∆) =

√
m2

Q + (p + λ∆)2

(Q = b, s, d),

and the subscript q corresponds to s or d quark for the
final Bs or B meson, respectively.
(b) Bc → V transitions (V = B∗

s , B∗)

V (1)(q2)

=
MBc + MV

2
√

MBcMV

∫
d3p

(2π)3
Ψ̄V

(
p +

2mb

EV + MV
∆
)

×
√

εq(p + ∆) + mq

2εq(p + ∆)

√
εc(p) + mc

2εc(p)
(44)

× 2
√

EV MV

εq(p + ∆) + mq

{
1 +

(p∆)
∆2

(
1 − εq(p + ∆) + mq

2mc

)

+
2
3

p2

EV + MV

×
(

εq(p + ∆) + mq

2mc[εb(p) + mb]
− 1

εq(p + ∆) + mq

)}
ΨBc

(p),

V S(2)(q2)

=
MBc + MV

2
√

MBcMV

∫
d3p

(2π)3
Ψ̄V

(
p +

2mb

EV + MV
∆
)

×
√

Eq + mq

2Eq

2
√

EV MV

Eq + mq
(45)

×
{

− 1
Eq

(
1 +

Eq − mq

4mc

)

×
[
MV − εq

(
p +

2mb

EV + MV
∆
)

−εb

(
p +

2mb

EV + MV
∆
)]

− (p∆)
∆2

(
1

2Eq

[
MBc

+ MV − εb(p) − εc(p)

− εq

(
p +

2mb

EV + MV
∆
)

− εb

(
p +

2mb

EV + MV
∆
)]

+
Eq − mq

2mcEq

[
MV − εq

(
p +

2mb

EV + MV
∆
)

−εb

(
p +

2mb

EV + MV
∆
)])}

ΨBc(p),

V V (2)(q2)

=
MBc + MV

2
√

MBcMV

∫
d3p

(2π)3
Ψ̄V

(
p +

2mb

EV + MV
∆
)

×
√

Eq + mq

2Eq

2
√

EV MV

Eq + mq

{
Eq − mq

4Eqmc
(46)

×
[
MV − εq

(
p +

2mb

EV + MV
∆
)

−εb

(
p +

2mb

EV + MV
∆
)]

− (p∆)
∆2

(
Eq − mq

4Eqmq

(
1 +

Eq − mq

2mc

)

×
[
MBc − MV − εb(p) − εc(p)

+ εq

(
p +

2mb

EV + MV
∆
)

+ εb

(
p +

2mb

EV + MV
∆
)]
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−Eq + mq

4Eqmb

[
MBc

+ MV − εb(p)

−εc(p) − εq

(
p +

2mb

EV + MV
∆
)

− εb

(
p +

2mb

EV + MV
∆
)])}

ΨBc(p),

A
(1)
1 (q2)

=
2
√

MBc
MV

MBc + MV

√
EV

MV

∫
d3p

(2π)3
Ψ̄V

(
p +

2mb

EV + MV
∆
)

×
√

εq(p + ∆) + mq

2εq(p + ∆)

√
εc(p) + mc

2εc(p)
(47)

×
{

1 +
1

2mc[εq(p + ∆) + mq]

×
[
2
3
p2 EV − MV

εb(p) + mb
− p2

3
− (p∆)

]}
ΨBc

(p),

A
S(2)
1 (q2)

=
2
√

MBc
MV

MBc + MV

√
EV

MV

∫
d3p

(2π)3
Ψ̄V

(
p +

2mb

EV + MV
∆
)

×
√

Eq + mq

2Eq

Eq − mq

Eq(Eq + mq)

(
1 +

Eq − mq

2mc

)

×
[
MV − εq

(
p +

2mb

EV + MV
∆
)

(48)

− εb

(
p +

2mb

EV + MV
∆
)]

ΨBc(p),

A
V (2)
1 (q2)

=
2
√

MBc
MV

MBc + MV

√
EV

MV

∫
d3p

(2π)3
Ψ̄V

(
p +

2mb

EV + MV
∆
)

×
√

Eq + mq

2Eq

Eq − mq

2Eq(Eq + mq)
(49)

× (p∆)
∆2

{
−
(

1 +
mq

mb

)

×
[
MBc + MV − εb(p) − εc(p) − εq

(
p +

2mb

EV + MV
∆
)

−εb

(
p +

2mb

EV + MV
∆
)]

+
Eq

mq

(
1 +

E2
q − m2

q

2Eqmc

)[
MBc

− MV − εb(p)

−εc(p) + εq

(
p +

2mb

EV + MV
∆
)

+εb

(
p +

2mb

EV + MV
∆
)]}

ΨBc(p),

A
(1)
2 (q2)

=
MBc + MV

2
√

MBcMV

2
√

EV MV

EV + MV

∫
d3p

(2π)3
Ψ̄V

(
p +

2mb

EV + MV
∆
)

×
√

εq(p + ∆) + mq

2εq(p + ∆)
(50)

×
√

εc(p) + mc

2εc(p)

{
1 +

MV

MBc

(
1 − EV + MV

εq(p + ∆) + mq

)

− (p∆)
∆2

EV + MV

εq(p + ∆) + mq

(
EV + MV

2mc

×
[
1 − MV

MBc

(
1 − εq(p + ∆) + mq

EV + MV

)]
+

MV

MBc

)

+
2
3

p2

εq(p + ∆) + mq

×
(

1
2mc

[
EV + MV

εb(p) + mb
− 1

2
+

MV

εq(p + ∆) + mq

+
MV

MBc

(
εq(p + ∆) + mq

εb(p) + mb
− EV + MV

εb(p) + mb
+

1
2

− EV

εq(p + ∆) + mq

)]

+
MV

MBc

(
1

εq(p + ∆) + mq
+

1
εb(p) + mb

))}
ΨBc(p),

A
S(2)
2 (q2)

=
MBc + MV

2
√

MBcMV

2
√

EV MV

EV + MV

∫
d3p

(2π)3
Ψ̄V

(
p +

2mb

EV + MV
∆
)

×
√

Eq + mq

2Eq

{
Eq − mq

Eq(Eq + mq)

[
1 +

Eq − mq

2mc
(51)

+
MV

MBc

(
1 +

EV + MV

Eq − mq
+

Eq − mq

2mc

)]

×
[
MV − εq

(
p +

2mb

EV + MV
∆
)

−εb

(
p +

2mb

EV + MV
∆
)]

− (p∆)
∆2

MV

MBc

EV + MV

Eq(Eq + mq)
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×
(

1
2

(
1 − Eq − mq

2mc

)[
MBc

+ MV − εb(p) − εc(p)

−εq

(
p +

2mb

EV + MV
∆
)

− εb

(
p +

2mb

EV + MV
∆
)]

−MBc − EV

mc

[
MV − εq

(
p +

2mb

EV + MV
∆
)

−εb

(
p +

2mb

EV + MV
∆
)])}

ΨBc
(p),

A
V (2)
2 (q2)

=
MBc

+ MV

2
√

MBcMV

2
√

EV MV

EV + MV

∫
d3p

(2π)3
Ψ̄V

(
p +

2mb

EV + MV
∆
)

×
√

Eq + mq

2Eq

(p∆)
∆2

Eq − mq

2Eq(Eq + mq)
(52)

×
{

−
(

1 +
mq

mb
+

MV

MBc

[
1 +

mq

mb

(
1 +

EV + MV

Eq − mq

)])

×
[
MBc

+ MV − εb(p) − εc(p) − εq

(
p +

2mb

EV + MV
∆
)

− εb

(
p +

2mb

EV + MV
∆
)]

+
Eq

mq

[
1 +

E2
q − m2

q

2Eqmq

+
MV

MBc

(
1 +

EV + MV

Eq
+

E2
q − m2

q

2Eqmq

)]

×
[
MBc − MV − εb(p) − εc(p) + εq

(
p +

2mb

EV + MV
∆
)

+ εb

(
p +

2mb

EV + MV
∆
)]}

ΨBc
(p),

A
(1)
0 (q2)

=
√

EV

MV

∫
d3p

(2π)3
Ψ̄V

(
p +

2mb

EV + MV
∆
)

×
√

εq(p + ∆) + mq

2εq(p + ∆)

√
εc(p) + mc

2εc(p)
(53)

×
{

1 +
MBc

− EV

εq(p + ∆) + mq

×
(

1 +
[
(p∆)
∆2 − 2

3
p2

EV + MV

×
(

1
εq(p + ∆) + mq

+
1

εb(p) + mb

)]

×
[
1 +

1
2mc

(
∆2

MBc − EV
+ εq(p + ∆) + mq

)])

− p2

6mc[εq(p + ∆) + mq]

}
ΨBc(p),

A
S(2)
0 (q2)

=
√

EV

MV

∫
d3p

(2π)3
Ψ̄V

(
p +

2mb

EV + MV
∆
)√

Eq + mq

2Eq

× 1
Eq(Eq + mq)

×
{[

(Eq − mq)
(

1 − Eq − mq

2mc

)
− MBc + EV

]
(54)

×
[
MV − εq

(
p +

2mb

EV + MV
∆
)

−εb

(
p +

2mb

EV + MV
∆
)]

− (p∆)
∆2

(
MBc

− EV

2

(
1 − Eq − mq

2mc

)

×
[
MBc + MV − εb(p) − εc(p) − εq

(
p +

2mb

EV + MV
∆
)

− εb

(
p +

2mb

EV + MV
∆
)]

+
∆2

mc

[
MV − εq

(
p +

2mb

EV + MV
∆
)

−εb

(
p +

2mb

EV + MV
∆
)])}

ΨBc
(p),

A
V (2)
0 (q2)

=
√

EV

MV

∫
d3p

(2π)3
Ψ̄V

(
p +

2mb

EV + MV
∆
)√

Eq + mq

2Eq

× (p∆)
∆2

1
2Eq(Eq + mq)

(55)

×
{

1
mq

[(
Eq − mq

2mc
+

Eq

Eq + mq

)
∆2

− (Eq − mq)(MBc − EV )
]

×
[
MBc − MV − εb(p) − εc(p) + εq

(
p +

2mb

EV + MV
∆
)

+ εb

(
p +

2mb

EV + MV
∆
)]

−
[

∆2

Eq + mq
+

mq

mb

(
∆2

Eq + mq
− MBc + EV

)]
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×
[
MBc

+ MV − εb(p) − εc(p)

−εq

(
p +

2mb

EV + MV
∆
)

− εb

(
p +

2mb

EV + MV
∆
)]}

ΨBc(p),

where

|∆| =

√
(M2

Bc
+ M2

V − q2)2

4M2
Bc

− M2
V ,

EV =
√

M2
V + ∆2.
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